Для оценки коэффициента линейной корреляции, ее множественного индекса или определения статистических зависимостей количественных показателей от качественных характеристик применяют шкалу Чеддока. Она условна, но широко используется в эконометрике, при построении сложных и многофакторных математических моделей.
Шкала Чеддока, как качественная статистическая характеристика в технико-экономических исследованиях успешно применяется в медицине, экономике, маркетинге и социологии.
На практике в медицине шкала Чеддока чаще всего применяется при расчёте математической статистики и вычисления вероятности событий. Например, при изучении общественного состояния здоровья населения или для углубленного изучения заболеваемости или смертности, в зависимости от возраста и пола, от какого-нибудь заболевания.
Соотношение Чеддока
Базисным научным подходом служит убеждение в том, что ни одно событие не происходит случайно. Математические или статистические закономерности никогда не рассматривают изолированно, обособлено, вне зависимости от влияющих факторов. Любое событие априори считается результатом совместного воздействия множества сил или обстоятельств.
К примеру, на уровень продаж в среднестатистическом магазине влияют:
- площадь торгового помещения;
- уровень освещенности;
- профессионализм персонала и менеджерского состава;
- витринная экспозиция товара;
- дополнительные услуги и сервис;
- покупательная способность населения;
- другие скрытые, неявные и неочевидные факторы.
Еще одним показательным примером служит количество детей в семье.
Оно зависит от:
- продолжительности супружеской жизни;
- религиозных взглядов родителей;
- материального состояния;
- социального статуса;
- репродуктивного здоровья;
- социально-культурных и этнических особенностей.
Шкала Чеддока (коэффициент корреляции определяет зависимости в точном числовом выражении) позволяет с математической достоверностью оценить уровня влияния каждого фактора в отдельности, степень их совместного воздействия на изучаемый показатель или событие.
Соотношение результативных признаков дает возможность переводить любой числовой показатель или количественное значение в качественный параметр. Зависимости шкалы Чеддока-Снедекора приведены в таблице.
Корреляционный коэффициент | 0,1-0,3 | 0,4-0,5 | 0,6-0,7 | 0,8-0,9 | 0,91-0,99 |
Характеристика связи | Незначительная | Умеренная | Ощутимая | Высокая | Сильная |
Математическое соотношение используют для построения одно- или многофакторных линейных моделей при статистическом анализе. Такие модели позволяют определить наличие взаимосвязи рассматриваемых переменных, характеристик, силу влияния или взаимосвязи.
Шкалу Чеддока используют для точного определения ковариационного момента в теории вероятностей, математической статистике, эконометрической сфере. Коэффициент позволяет установить линейную, обратную или квадратную зависимость случайных величин.
Способ обработки больших массивов статистических данных с точным определением тесноты прямой либо обратной связи различных параметров называют корреляционным анализом. Его невозможно выполнять без соотношения Чеддока-Снедекора.
Коэффициенты корреляции зависимости от типов измерительных шкал
В сфере статистического анализа применяют специальные постоянные значения, которые позволяют точно установить взаимосвязь между переменными показателями, измеренными с помощью различных шкал.
Это своеобразное приведение к единому знаменателю. К переменным x и y, вычисляемым в дихотомической шкале, применяют коэффициент ассоциаций Пирсона. Если только одна из непостоянных величин дихотомическая (двоичная) используют точечное двухрядное корреляционное значение.
Виды шкал, в которых применяют соотношение Чеддока-Снедекора:
- X-признаков. Представляет собой способ организации переменных величин в наборах данных, свойств, значений и характеристик для различных статистических наблюдений – метеорологических, медицинских, товарно-сырьевых.
- Интервальная. Отображает разницу между значениями, которые можно рассчитать, но эти соотношения лишены статистического смысла. Интервальная шкала имеет сочетанные свойства номинальной и порядковой математической схемы. Ее используют для вычисления количественного изменения признака или объекта на заданном временном отрезке. Пример – измерение температуры морской воды. Утром она +19°С, к вечеру повышается до +24°С, то есть становится в 1,26 раз больше.
- Ранговая. Используют для классификации признаков, свойств, событий или объектов по принципу «больше-меньше», «теплее-холоднее», «выше-ниже». При измерениях в такой шкале изучаемым объектам присваивают числовое значение в соответствии с выраженностью вычисляемого свойства. Его определяют с помощью соотношения Чеддока-Снедекора.
- Номинальная. Содержит исключительно данные, которые не могут быть упорядочены. С ними не производят арифметические действия. Такую шкалу используют для сортировки массивов статистических данных или объектов по общему признаку. К значениям применяют бисерально-точечный коэффициент корреляции согласно соотношению Чеддока-Снедекора.
При обеих дихотомических переменных используют четырехполевую зависимость в соответствии со шкалой, по которой производились вычисления. Нелинейная взаимосвязь изучаемых объектов лишает смысла введение корреляционной зависимости.
Что такое Шкала Чеддока
Аналитическая группировка количественных данных, качественных характеристик или изучаемых свойств объектов позволяет построить график эмпирической связи между несколькими переменными.
Шкала Чеддока коэффициент корреляции отображает в числовом выражении. Если он равен или больше 0,7313, влияние фактора либо взаимосвязь свойств считают высокой. Шкалу применяют при вычислении регрессивного (обратного) соотношения показателей.
Геометрический смысл корреляционного коэффициента демонстрирует различие в угле наклона и траектории осей x и y при графическом отображении зависимости. Линейное соотношение указывает на наличие прямой связи переменных или их взаимного влияния.
Оно принимает значение от -1 до +1. Первый показатель означает регрессивную связь, второй – прямую. Шкала Чеддока – это соотношение между случайными факторами или переменными величинами, позволяющее переводить качественные характеристики объектов в относительно точное числовое значение.
В сфере статистического анализа особый смысл имеет расчет множественного корреляционного коэффициента. Он отражает тесноту прямой или линейной связи основной переменной с несколькими влияющими факторами, рассматриваемыми в совокупности.
Множественный коэффициент корреляции, определяемый с помощью шкалы Чеддока-Снедекора, позволяет привести к единому знаменателю результативные признаки и факторные.
Для вычисления остаточной общей суммы квадратов погрешностей или отклонений применяют формулу ∑(yi-yx)2. Построение регрессионных математических моделей с вычислениями по шкале Чеддока актуально при создании прогностических систем.
В них учитывают только допустимые значения факторных признаков или независимых переменных. Формула Чеддока-Снедекора позволяет предсказать показатель Y при любом отклонении линии Х на графике взаимосвязи.
При прогнозировании среднегодового уровня продаж определенного товара или расчете экономических показателей предприятия за отчетный период можно вычислить соответствие переменных y и x на любом отрезке времени с графическим представлением зависимости.
Правила ввода данных
Применяют группировку значений по общим характеристикам или сортировку статистического массива по одному признаку в номинальной шкале. Правила ввода данных различаются в зависимости от выстраиваемой модели, используемых математической системы, способа обработки.
Для формульных, табличных и графических представлений принципы заполнения информацией используют разные. Правила группировки данных облегчают статистическую обработку.
При сортировании двоичных совокупностей числовые значения классифицируют для учета каждого значения одновременно по обоим интервалам. Их размещают на пересечении соответствующих строк и столбцов.
Правила техники группирования данных для использования в вычислениях по шкале Чеддока-Снедекора:
- Подобрать подходящее интервальное значение для каждой переменной.
- Нанести найденные показатели на соответствующие координатные оси графического отображения.
- Провести от каждой точки соединяющие и направляющие линии для создания рабочей координатной сетки.
- Поместить каждую пару связанных переменных величин в соответствующую клетку корреляционного поля, присвоив указывающую на свойства отметку.
- Суммировать значения в строках и столбцах для получения маргинальных вычислений.
В формульные и табличные корреляционные системы вводить значения проще, чем в графические. Нужно всего лишь подставить необходимый коэффициент из приведенной выше шкалы зависимостей.
Показатели корреляции и детерминации
Соотношение Чеддока-Снедекора применяют при анализе массивов статистических данных, изучении практической значимости влияющих факторов или свойств объектов. Его используют построении синтезированных моделей для прогнозирования событийной вероятности.
Шкала Чеддока позволяет дать качественную оценку тесноте связи или взаимного влияния переменных величин. Коэффициент бинарной корреляции имеет особое значение в регрессивных вычислениях степени обратного воздействия результативных признаков на предмет исследования.
В таких расчетах не обойтись без дополнительного показателя. В этом качестве в формулу вводят коэффициент детерминации, который всегда равен квадрату корреляционного показателя. Дополнительный параметр записывают в неизменном виде R2.
Показатель детерминации в математических моделях представляет собой долю дисперсии – диапазона возможного разброса цифровых значений случайной переменной относительно вычислительного ожидания.
Коэффициент детерминации получают из известной величины корреляционного показателя, подобранного по шкале Чеддока-Снедекора. Величину рассматривают в качестве универсальной формульной меры зависимостей одной случайной переменной от ряда прочих.
Частный случай показателя детерминации – отношение R2 линейного, бинарного или множественного корреляционного коэффициента зависимого объекта к факторным величинам.
Такая формула справедлива исключительно для моделей с известным постоянным значением результативного признака. При вычислении двоичной обратной связи (регрессии) значение квадрата корреляционного показателя, называемого индексом детерминации, располагается в диапазоне от -1 до +1.
Для расчета парной регрессии с константой применяют формулу общего вида SStot=SSreg+SSres. По результатам вычислений делают вывод о силе связи или взаимного влияния изучаемых факторов.
Показатель детерминации демонстрирует цифровое значение доли вариации результативного признака объекта или события. При интерпретации величины R2 коэффициента корреляции его представляют в процентном выражении.
К примеру, 0,8472 = 0,7174 означает, что в 71,74% случаев при изменении факторного показателя результативный признак приобретает соответствующее значение. Уравнение отличает высокая точность при правильном подборе значений по шкале Чеддока-Снедекора.
Оставшиеся 28,26% показателя детерминации приходятся на неучтенные в модели факторы. При отсутствии заметной статистической связи между корреляционными коэффициентами переменных для вычисления асимптотического распределения используют уравнение х2 (К-1), где К – количество влияющих факторов.
Средняя ошибка аппроксимации
В социологических исследованиях, медицинской статистике, эконометрике значения силы взаимного влияния или степени устойчивости зависимостей часто рассчитывают с использованием замены объектов родственными и упрощенными.
Такой метод научного поиска называют аппроксимацией. Она позволяет изучать количественные характеристики, качественные свойства, факторные признаки с большей точностью и меньшим уровнем погрешности.
В теории чисел с помощью аппроксимации исследуют диофантовы приближения. В геометрии метод замены применяют при рассмотрении пересекающихся ломаных кривых. В эконометрической дисциплине распространены вычисления с применением средней ошибки аппроксимации.
Так называют диапазон отклонений расчетных величин зависимой переменной от фактического значения. Метод имеет особое значение в уравнениях линейной бинарной регрессии.
Качественные характеристики результирующего или влияющего фактора в разных математических моделях оценивают с помощью средней либо абсолютной ошибки аппроксимации.
Не превышающее 5-7% погрешности значение свидетельствует о правильном подборе соотношения уравнения с исходными данными. Если средняя ошибка аппроксимации выходит за пределы указанного диапазона, формулу не используют для статистических вычислений.
Шкала Чеддока (коэффициент корреляции, отклоняющийся менее, чем на 1% от показателя 1,00 гласит о стойкой функциональной связи объектов, событий или свойств) позволяет приблизить объем совокупности к фактическому значению результативного признака.
Показатель всегда отличается от теоретической величины, рассчитанной с применением уравнения парной регрессии. В редких случаях ошибка аппроксимации изначально равна нулю. Допустимый предел погрешности составляет 8-10%.
Отрицательные значения
Любую вычисленную статистическую величину с коэффициентом корреляции подвергают математическому испытанию на достоверность. Совокупность наблюдений или массивов разнородных данных представляет собой определенную выборку, в которой есть погрешности.
Поэтому такие расчеты воспринимают не абсолютной истиной, а относительно точной оценкой влияющих факторов, качественных характеристик объектов, степени связи факторов.
Отрицательные значения при вычислениях с применением шкалы Чеддока типичны для регрессивных моделей, целью которых служит установление обратной связи между объектами исследования в точном цифровом выражении. Коэффициент корреляции в таких уравнениях может принимать значения от -1 до 0.
Видео о шкале Чеддока-Снедекора
Коэффициент корреляции: